Soccer Player 5

Saturday, 30 September 2017

Organisasi Komputer Dasar

Organisasi Komputer Dasar

            Hallo semua, apa kabarnya? Sudah lama saya tidak upload materi ke dalam blog ini. Sekarang saya akan memberikan beberapa pembahasan menarik yaitu tentang Organisasi Komputer Dasar. Sebelum masuk ke pembahasan, mari kita ketahui terlebih dahulu definisi dari Evolusi, Arsitektur, dan Komputer.
·        Organisasi
Terdapat beberapa teori dan perspektif mengenai organisasi, ada yang cocok satu sama lain, dan ada pula yang berbeda. Organisasi pada dasarnya digunakan sebagai tempat atau wadah bagi orang-orang untuk berkumpul, bekerja sama secara rasional dan sistematis, terencana, terpimpin dan terkendali, dalam memanfaatkan sumber daya (uang, material, mesin, metode, lingkungan), sarana-parasarana, data, dan lain sebagainya yang digunakan secara efisien dan efektif untuk mencapai tujuan organisasi.
Menurut para ahli terdapat beberapa pengertian organisasi sebagai berikut.
o   Stoner mengatakan bahwa organisasi adalah suatu pola hubungan-hubungan yang melalui mana orang-orang di bawah pengarahan atasan mengejar tujuan bersama.
o   James D. Mooney mengemukakan bahwa organisasi adalah bentuk setiap perserikatan manusia untuk mencapai tujuan bersama.
o   Chester I. Bernard berpendapat bahwa organisasi adalah merupakan suatu sistem aktivitas kerja sama yang dilakukan oleh dua orang atau lebih.
o   Stephen P. Robbins menyatakan bahwa Organisasi adalah kesatuan (entity) sosial yang dikoordinasikan secara sadar, dengan sebuah batasan yang relatif dapat diidentifikasi, yang bekerja atas dasar yang relatif terus menerus untuk mencapai suatu tujuan bersama atau sekelompok tujuan.
Sebuah organisasi dapat terbentuk karena dipengaruhi oleh beberapa aspek seperti penyatuan visi dan misi serta tujuan yang sama dengan perwujudan eksistensi sekelompok orang tersebut terhadap masyarakat. Organisasi yang dianggap baik adalah organisasi yang dapat diakui keberadaannya oleh masyarakat di sekitarnya, karena memberikan kontribusi seperti; pengambilan sumber daya manusia dalam masyarakat sebagai anggota-anggotanya sehingga menekan angka pengangguran.
Orang-orang yang ada di dalam suatu organisasi mempunyai suatu keterkaitan yang terus menerus. Rasa keterkaitan ini, bukan berarti keanggotaan seumur hidup. Akan tetapi sebaliknya, organisasi menghadapi perubahan yang konstan di dalam keanggotaan mereka, meskipun pada saat mereka menjadi anggota, orang-orang dalam organisasi berpartisipasi secara relatif teratur.
·        Komputer
Komputer adalah alat yang dipakai untuk mengolah data menurut prosedur yang telah dirumuskan. Kata computer pada awalnya dipergunakan untuk menggambarkan orang yang perkerjaannya melakukan perhitungan aritmetika, dengan atau tanpa alat bantu, tetapi arti kata ini kemudian dipindahkan kepada mesin itu sendiri. Asal mulanya, pengolahan informasi hampir eksklusif berhubungan dengan masalah aritmetika, tetapi komputer modern dipakai untuk banyak tugas yang tidak berhubungan dengan matematika.
            Oke, diatas adalah teori dasar dari pembahasan menarik yang akan segera kita bahas di bawah sini, yuk tanpa panjang lebar inilah pembahasan menarik kali ini.

Organisasi Komputer Dasar

Organisasi komputer berkaitan dengan unit-unit operasional komputer dan berhubungan dengan komponen sistem komputer, seperti hardware, sinyal kontrol, interface, teknologi memori.
Arsitektur komputer lebih cenderung pada kajian atribut-atribut sistem komputer yang terkait dengan seorang programmer. Contohnya, set instruksi, aritmatika yang digunakan, teknik pengalamatan, mekanisme I/O.
Sebagai contoh apakah suatu komputer perlu memiliki instruksi pengalamatan pada memori merupakan masalah rancangan arsitektural. Apakah instruksi pengalamatan tersebut akan diimplementasikan secara langsung ataukah melalui mekanisme cache adalah kajian organisasional.
Organisasi dasar dari sebuah komputer dapat ditunjukkan pada blok diagram di bawah ini:

CPU mengendalikan urutan dari semua pertukaran informasi dalam komputer dan dengan dunia luar melalui unit I/O. Sedangkan unit memori terdiri dari sejumlah besar lokasi yang menyimpan program dan data yang sedang aktif digunakan CPU. Ketiga unit tersebut dihubungkan dengan berbagai macam bus.
Bus adalah sekelompok kawat atau sebuah jalur fisik yang berfungsi menghubungkan register-resgister dengan unit-unit fungsional yang berhubungan dengan tiap-tiap modul. Informasi saling dipertukarkan di antara modul dengan melalui bus.
Perbedaan Utama Organisasi Komputer :
Bagian yang terkait dengan erat dengan unit-unit operasional.
Contoh: Teknologi hardware, perangkat antarmuka, teknologi memori, sistem memori, dan sinyal-sinyal.
Fungsi komputer didefinisikan sebagai operasi masing-masing komponen sebagai bagian dari struktur. Adapun fungsi dari masing-masing komponen dalam struktur di atas adalah sebagai berikut :
1.      Input Device (Alat Masukan)
Adalah perangkat keras komputer yang berfungsi sebagai alat untuk memasukan data atau perintah ke dalam komputer. Contoh : keyboard
2.      Output Device (Alat Keluaran)
Adalah perangkat keras komputer yang berfungsi untuk menampilkan keluaran sebagai hasil pengolahan data. Keluaran dapat berupa hard-copy (ke kertas), soft-copy (ke monitor), ataupun berupa suara.
3.      I/O Ports
Bagian ini digunakan untuk menerima ataupun mengirim data ke luar sistem. Peralatan input dan output di atas terhubung melalui port ini.
4.      CPU (Central Processing Unit)
CPU merupakan otak sistem komputer, dan memiliki dua bagian fungsi operasional, yaitu: ALU (Arithmetical Logical Unit) sebagai pusat pengolah data, dan CU (Control Unit) sebagai pengontrol kerja komputer.
5.      Memori
Memori terbagi menjadi dua bagian yaitu memori internal dan memori eksternal. Memori internal berupa RAM (Random Access Memory) yang berfungsi untuk menyimpan program yang kita olah untuk sementara waktu, dan ROM (Read Only Memory) yaitu memori yang hanya bisa dibaca dan berguna sebagai penyedia informasi pada saat komputer pertama kali dinyalakan.
6.      Data Bus
Adalah jalur-jalur perpindahan data antar modul dalam sistem komputer. Karena pada suatu saat tertentu masing-masing saluran hanya dapat membawa 1 bit data, maka jumlah saluran menentukan jumlah bit yang dapat ditransfer pada suatu saat. Lebar data bus ini menentukan kinerja sistem secara keseluruhan. Sifatnya bidirectional, artinya CPU dapat membaca dan menerima data melalui data bus ini. Data bus biasanya terdiri atas 8, 16, 32, atau 64 jalur paralel.
7.      Address Bus
Digunakan untuk menandakan lokasi sumber ataupun tujuan pada proses transfer data. Pada jalur ini, CPU akan mengirimkan alamat memori yang akan ditulis atau dibaca.
8.      Control Bus
Control Bus digunakan untuk mengontrol penggunaan serta akses ke Data Bus dan Address Bus. Terdiri atas 4 sampai 10 jalur paralel.
INPUT DEVICE
Input Device adalah perangkat keras komputer yang berfungsi sebagai alat untuk memasukan data atau perintah ke dalam sebuah komputer.
Contohnya :
a.       Keyboard
Keyboard digunakan untuk mengetik teks dan angka ke dalam pengolah kata, editor   teks atau program lainnya. Sebuah keyboard komputer membedakan setiap tombol fisik dari setiap lain dan laporan semua penekanan tombol pada software.
b.      Mouse
Mouse adalah perangkat yang digunakan untuk menunjuk posisi kursor pada layar komputer. Hal ini memungkinkan pengguna untuk memilih item yang disimpan pada komputer dan melakukan sebuah tindakan untuk menjalankan komputer.
c.       Scanner
Scanner adalah suatu untuk memindahkan objek yang terdapat diatas lensa scanner ke dalam memori penyimpanan pada komputer. Jadi jika diatas lensa scanner terdapat sebuah kertas yang berisi teks ataupun gambar, nantinya isi yang ada pada kertas yang bersangkutan ini akan dipindahkan secara keseluruhan ke dalam komputer.

OUTPUT DEVICE
Output Device adalah sebuah perangkat keras komputer yang berfungsi untuk menampilkan hasil keluaran sebagai hasil dari pengolahan data. Keluaran/output dapat berupa hard-copy (kekertas), soft-copy (ke monitor), ataupun berupa suara.
Contohnya :
a.       Monitor
Sebuah layar pada komputer yang digunakan untuk menampilkan tampilan berupa soft-copy atau software yang ada pada komputer. Terdapat 3 jenis monitor, yaitu :
-         CRT (Cathode Rays Tube)
-         LCD (Liquid Crystal Display)
-         LED (Light Emitting Diode).
b.      Printer
Sebuah alat yang digunakan untuk mencetak atau mengeluarkan hasil output dalam bentuk hard-copy atau kertas.
c.       Speaker
Sebuah alat yang digunakan untuk mengeluarkan hasil output berupa suara atau voice.
INPUT/OUTPUT PORTS
Bagian ini digunakan untuk menerima ataupun mengirim data keluar sistem. Peralatan input dan output di atas terhubung melalui port ini.

CPU (Central Processing Unit)
Central Processing Unit (CPU) merupakan otak dari sebuah sistem komputer. CPU memiliki dua bagian fungsi operasional, yaitu :
1.      Arithmetical Logical Unit (ALU) sebagai pusat sebuah pengolah data.
2.      Control Unit (CU) digunakan untuk mengontrol kerja dari komputer. Biasa disebut dengan processor.
Komponen-komponen yang terdapatdalam CPU adalah :
a.       Mainboard
Motherboard atau mainboard merupakan papan utama dimana terdapat komponen-komponen serta chip controller yang bertugas mengatur lalu lintas data dalam sistem motherboard
b.      Processor
Processor berfungsi untuk mengontrol keseluruhan jalannya sebuah sistem komputer dan digunakan sebagai pusat atau otak dari komputer yang berfungsi untuk melakukan perhitungan dan menjalankan tugas.
MEMORY
Terbagi menjadi beberapa macam yaitu :
a.       ROM (Read-Only-Memory)
Memori yang digunakan hanya untuk membaca isinya dan tidak dapat merubah atau mengedit data yang telah tersedia. ROM pada komputer disediakan oleh vendor komputer dan berisi program atau data.
b.      RAM (Random-Access Memory)
Memori yang isinya dapat diubah atau diedit selama komputer masih dalam kondisi menyala dan bersifat volatile.
c.       MemoriEksternal
Sebuah memori tambahan yang berfungsi untuk menyimpan data.
 Referensi :

Evolusi Arsitektur Komputer

Evolusi Arsitektur Komputer

            Hallo semua, apa kabarnya? Sudah lama saya tidak upload materi ke dalam blog ini. Sekarang saya akan memberikan beberapa pembahasan menarik yaitu tentang Evolusi Arsitektur Komputer. Sebelum masuk ke pembahasan, mari kita ketahui terlebih dahulu definisi dari Evolusi, Arsitektur, dan Komputer.
·        Evolusi
Evolusi adalah proses perubahan secara berangsur-angsur (bertingkat) dimana sesuatu berubah menjadi bentuk lain (yang biasanya) menjadi lebih kompleks/rumit ataupun berubah menjadi bentuk yang lebih baik.
Berbeda dengan revolusi, proses evolusi biasanya berlangsung lama. Dalam konteks penggunaan istilah, evolusi seringkali digunakan untuk menggambarkan perkembangan yang lambat.
·        Arsitektur
Arsitektur adalah seni yang dilakukan oleh setiap individual untuk berimajinasikan diri mereka dan ilmu dalam merancang bangunan. Dalam artian yang lebih luas, arsitektur mencakup merancang dan membangun keseluruhan lingkungan binaan, mulai dari level makro yaitu perencanaan kota, perancangan perkotaan, arsitektur lanskap, hingga ke level mikro yaitu desain bangunan, desain perabot dan desain produk. Arsitektur juga merujuk kepada hasil-hasil proses perancangan tersebut.
·        Komputer
Komputer adalah alat yang dipakai untuk mengolah data menurut prosedur yang telah dirumuskan. Kata computer pada awalnya dipergunakan untuk menggambarkan orang yang perkerjaannya melakukan perhitungan aritmetika, dengan atau tanpa alat bantu, tetapi arti kata ini kemudian dipindahkan kepada mesin itu sendiri. Asal mulanya, pengolahan informasi hampir eksklusif berhubungan dengan masalah aritmetika, tetapi komputer modern dipakai untuk banyak tugas yang tidak berhubungan dengan matematika.
            Oke, diatas adalah teori dasar dari pembahasan menarik yang akan segera kita bahas di bawah sini, yuk tanpa panjang lebar inilah pembahasan menarik kali ini.
Perkembangan Arsitektur Komputer
Arsitektur komputer  dapat didefinisikan dan dikategorikan sebagai ilmu dan sekaligus seni mengenai cara interkoneksi komponen-komponen perangkat keras untuk dapat menciptakan sebuah komputer yang memenuhi kebutuhan fungsional, kinerja, dan target biayanya. Dalam bidang teknik komputer, arsitektur komputer adalah konsep perencanaan dan struktur pengoperasian dasar dari suatu sistem komputer. Arsitektur komputer ini merupakan rencana cetak-biru dan deskripsi fungsional dari kebutuhan bagian perangkat keras yang didesain (kecepatan proses dan sistem interkoneksinya). Dalam hal ini, implementasi perencanaan dari masing–masing bagian akan lebih difokuskan terutama, mengenai bagaimana CPU akan bekerja, dan mengenai cara pengaksesan data dan alamat dari dan ke memori cache, RAM, ROM, cakram keras, dll).
Di antara demikian banyak pemahaman tentang arsitektur, arsitektur dikenal juga sebagai suatu tradisi yang berkembang. Dari waktu ke waktu wajah arsitektur selalu mengalami perubahan. Hal-hal yang mempengaruhi perkembangan dan pengembangan arsitektur tidak hanya berupa keadaan eksternal, tetapi juga keadaan internal. Disini kita membahas mengenai evolusi arsitektur pada komputer. Arsitektur dari komputer sendiri merupakan suatu susunan atau rancangan dari komputer tersebut sehingga membentuk suatu kesatuan yang dinamakan komputer. Komputer sendiri berevolusi dengan cepat mulai dari generasi pertama hingga sekarang. Evolusi sendiri didasarkan pada fungsi atau kegunaanya dalam kehidupan. Evolusi pada komputer sendiri ada karena keinginan atau hal yang dibutuhkan manusia itu sendiri. Sekarang ini komputer sudah dapat melakaukan perintah yang sulit sekalipun tidak seperti dulu yang hanya bisa melakukan yang sederhana saja. Itulah yang dinamakan evolusi arsitektur yaitu perubahan bentuk juga fungsi dan kemampuannya.
KLASIFIKASI ARSITEKTUR KOMPUTER
1.      Arsitektur Von Neumann
Arsitektur von Neumann (atau Mesin Von Neumann) adalah arsitektur yang diciptakan oleh John von Neumann (1903-1957). Arsitektur ini digunakan oleh hampir semua komputer saat ini. Arsitektur Von Neumann menggambarkan komputer dengan empat bagian utama: Unit Aritmatika dan Logis (ALU), unit kontrol, memori, dan alat masukan dan hasil (secara kolektif dinamakan I/O). Bagian ini dihubungkan oleh berkas kawat, “bus”.

Pada perkembangan komputer modern, setiap prosesor terdiri dari atas :
Arithmetic and Logic Unit  (ALU)
Arithmatic and Logic Unit atau Unit Aritmetika dan Logika berfungsi untuk melakukan semua perhitungan aritmatika (matematika) dan logika yang terjadi sesuai dengan instruksi program. ALU menjalankan operasi penambahan,  pengurangan, dan operasi-operasi sederhana lainnya pada input-inputnya dan memberikan hasilnya pada register output.
Register
Register merupakan alat penyimpanan kecil yang  mempunyai kecepatan akses cukup tinggi, yang  digunakan untuk menyimpan data dan instruksi yang  sedang diproses, sementara data dan instruksi lainnya yang menunggugiliran untukdiproses masihdisimpan yang menunggugiliran untukdiproses masihdisimpan di dalam memori utama. Setiap register dapat menyimpan satu bilangan hingga mencapai jumlah maksimum tertentu tergantung pada ukurannya.
Control Unit
Control Unit atau Unit Kontrol berfungsi untuk mengatur dan mengendalikan semua peralatan yang ada pada sistem komputer. Unit kendali akan mengatur kapan alat input  menerima data dan kapan data diolah serta kapan ditampilkan pada alat output. Unit ini juga mengartikan instruksi-instruksi dari program. Unit ini juga mengartikan instruksi-instruksi dari program komputer, membawa data dari alat input ke memori utama dan mengambil data dari memori utama untuk diolah. Bila ada instruksi untuk perhitungan aritmatika atau  perbandingan logika, maka unit kendali akan mengirim  instruksi tersebut ke ALU. Hasil dari pengolahan data  dibawa oleh unit kendali ke memori utama lagi untuk  disimpan, dan pada saatnya akan disajikan ke alat output.
Bus
Bus adalah sekelompok lintasan sinyal yang digunakan untuk menggerakkan bit-bit informasi dari satu tempat ke tempat lain, dikelompokkan menurut fungsinya Standar bus dari suatu sistem komputer adalah bus alamat (address bus), bus data (data bus) dan bus kontrol (control bus). Komputer menggunakan suatu bus atau saluran bus sebagaimana kendaraan bus yang mengangkut penumpang dari satu tempat ke tempat lain, maka bus komputer mengangkut data. Bus komputer menghubungkan CPU pada RAM dan periferal. Semua komputer menggunakan saluran busnya untuk maksud yang sama.
2.      Arsitektur RISC
RICS singkatan dari Reduced Instruction Set Computer. Merupakan bagian dari arsitektur mikroprosessor, berbentuk kecil dan berfungsi untuk negeset istruksi dalam komunikasi diantara arsitektur yang lainnya. Reduced Instruction Set Computing (RISC) atau “Komputasi set instruksi yang disederhanakan” pertama kali digagas oleh John Cocke, peneliti dari IBM di Yorktown, New York pada tahun 1974 saat ia membuktikan bahwa sekitar 20% instruksi pada sebuah prosesor ternyata menangani sekitar 80% dari keseluruhan kerjanya. Komputer pertama yang menggunakan konsep RISC ini adalah IBM PC/XT pada era 1980-an. Istilah RISC sendiri pertama kali dipopulerkan oleh David Patterson,pengajar pada University of California di Berkely.

RISC, yang jika diterjemahkan berarti “Komputasi Kumpulan Instruksi yang Disederhanakan”, merupakan sebuah arsitektur komputer atau arsitektur komputasi modern dengan instruksi-instruksi dan jenis eksekusi yang paling sederhana. Arsitektur ini digunakan pada komputer dengan kinerja tinggi, seperti komputer vektor.
Selain digunakan dalam komputer vektor, desain ini juga diimplementasikan pada prosesor komputer lain, seperti pada beberapa mikroprosesor Intel 960, Itanium (IA64) dari Intel Corporation, Alpha AXP dari DEC, R4x00 dari MIPS Corporation, PowerPC dan Arsitektur POWER dari International Business Machine. Selain itu, RISC juga umum dipakai pada Advanced RISC Machine (ARM) dan StrongARM (termasuk di antaranya adalah Intel XScale), SPARC dan UltraSPARC dari Sun Microsystems, serta PA-RISC dari Hewlett-Packard.
Karakteristik RISC
·         Siklus mesin ditentukan oleh waktu yang digunakan untuk mengambil dua buah operand dari register, melakukan operasi ALU, dan menyimpan hasil operasinya kedalam register, dengan demikian instruksi mesin RISC tidak boleh lebih kompleks dan harus dapat mengeksekusi secepat mikroinstruksi pada mesin-mesin CISC
·         Operasi berbentuk dari register-ke register yang hanya terdiri dari operasi load dan store yang mengakses memori . Fitur rancangan ini menyederhanakan set instruksi sehingga menyederhanakan pula unit control
·         Penggunaan mode pengalamatan sederhana, hampir sama dengan instruksi menggunakan pengalamatan register.
·         Penggunaan format-format instruksi sederhana, panjang instruksinya tetap dan disesuaikan dengan panjang word.

Karakteristik-Karakteristik Eksekusi Instruksi
Salah satu evolusi komputer yang besar adalah evolusi bahasa pemprograman. Bahasa pemprograman memungkinkan programmer dapat mengekspresikan algoritma lebih singkat, lebih memperhatikan rincian, dan mendukung penggunaan pemprograman terstruktur, tetapi ternyata muncul masalah lain yaitu semantic gap, yaitu perbedaan antara operasi-operasi yang disediakan oleh HLL dengan yang disediakan oleh arsitektur komputer, ini ditandai dengan ketidakefisienan eksekusi, program mesin yang berukuran besar,dan kompleksitas kompiler.
Untuk mengurangi kesenjangan ini para perancang menjawabnya dengan arsitektur. Fitur-fiturnya meliputi set-set instruksi yang banyak, lusinan mode pengalamatan, dan statemen –statemen HLL yang diimplementasikan pada perangkat keras.
Operasi
Beberapa penelitian telah menganalisis tingkah laku program HLL (High Level Language). Assignment Statement sangat menonjol yang menyatakan bahwa perpindahan sederhana merupakan satu hal yang penting. Hasil penelitian ini merupakan hal yang penting bagi perancang set instruksi mesin yang mengindikasikan jenis instruksi mana yang sering terjadi karena harus didukung optimal.
Operand
Penelitian Paterson telah memperhatikan [PATT82a] frekuensi dinamik terjadinya kelaskelas variabel. Hasil yang konsisten diantara program pascal dan C menunjukkan mayoritas referensi menunjuk ke variable scalar. Penelitian ini telah menguji tingkah laku dinamik program HLL yang tidak tergantung pada arsitektur tertentu. Penelitian [LUND77] menguji instruksi DEC-10 dan secara dinamik menemukan setiap instruksi rata-rata mereferensi 0,5 operand dalam memori dan rata-rata mereferensi 1,4 register. Tentu saja angka ini tergantung pada arsitektur dan kompiler namun sudah cukup menjelaskan frekuensipengaksesan operand sehingga menyatakan pentingnya sebuah arsitektur.
Procedure Calls
Dalam HLL procedure call dan return merupakan aspek penting karena merupakan operasi yang membutuhkan banyak waktu dalam program yang dikompalasi sehingga banyak berguna untuk memperhatikan cara implementasi opperasi ini secara efisien. Adapun aspeknya yang penting adalah jumlah parameter dan variabel yang berkaitan dengan prosedur dan kedalaman pensarangan (nesting).
3.      Arsitektur CISC
Complex instruction-set computing atau Complex Instruction-Set Computer (CISC) “Kumpulan instruksi komputasi kompleks”) adalah sebuah arsitektur dari set instruksi dimana setiap instruksi akan menjalankan beberapa operasi tingkat rendah, seperti pengambilan dari memory, operasi aritmetika, dan penyimpanan ke dalam memory, semuanya sekaligus hanya di dalam sebuah instruksi. Karakteristik CISC dapat dikatakan bertolak-belakang dengan RISC.
Sebelum proses RISC didesain untuk pertama kalinya, banyak arsitek komputer mencoba menjembatani celah semantik”, yaitu bagaimana cara untuk membuat set-set instruksi untuk mempermudah pemrograman level tinggi dengan menyediakan instruksi “level tinggi” seperti pemanggilan procedure, proses pengulangan dan mode-mode pengalamatan kompleks sehingga struktur data dan akses array dapat dikombinasikan dengan sebuah instruksi. Karakteristik CISC yg “sarat informasi” ini memberikan keuntungan di mana ukuran program-program yang dihasilkan akan menjadi relatif lebih kecil, dan penggunaan memory akan semakin berkurang. Karena CISC inilah biaya pembuatan komputer pada saat itu (tahun 1960) menjadi jauh lebih hemat.
Memang setelah itu banyak desain yang memberikan hasil yang lebih baik dengan biaya yang lebih rendah, dan juga mengakibatkan pemrograman level tinggi menjadi lebih sederhana, tetapi pada kenyataannya tidaklah selalu demikian. Contohnya, arsitektur kompleks yang didesain dengan kurang baik (yang menggunakan kode-kode mikro untuk mengakses fungsi-fungsi hardware), akan berada pada situasi di mana akan lebih mudah untuk meningkatkan performansi dengan tidak menggunakan instruksi yang kompleks (seperti instruksi pemanggilan procedure), tetapi dengan menggunakan urutan instruksi yang sederhana.
Istilah RISC dan CISC saat ini kurang dikenal, setelah melihat perkembangan lebih lanjut dari desain dan implementasi baik CISC dan CISC. Implementasi CISC paralel untuk pertama kalinya, seperti 486 dari Intel, AMD, Cyrix, dan IBM telah mendukung setiap instruksi yang digunakan oleh prosesor-prosesor sebelumnya, meskipun efisiensi tertingginya hanya saat digunakan pada subset x86 yang sederhana (mirip dengan set instruksi RISC, tetapi tanpa batasan penyimpanan/pengambilan data dari RISC). Prosesor-prosesor modern x86 juga telah menyandikan dan membagi lebih banyak lagi instruksi-instruksi kompleks menjadi beberapa “operasi-mikro” internal yang lebih kecil sehingga dapat instruksi-instruksi tersebut dapat dilakukan secara paralel, sehingga mencapai performansi tinggi pada subset instruksi yang lebih besar.
Karakteristik CISC
·         Sarat informasi memberikan keuntungan di mana ukuran program-program yang dihasilkan akan menjadi relatif lebih kecil, dan penggunaan memory akan semakin berkurang. Karena CISC inilah biaya pembuatan komputer pada saat itu (tahun 1960) menjadi jauh lebih hemat
·         Dimaksudkan untuk meminimumkan jumlah perintah yang diperlukan untuk mengerjakan pekerjaan yang diberikan. (Jumlah perintah sedikit tetapi rumit) Konsep CISC menjadikan mesin mudah untuk diprogram dalam bahasa rakitan.
4.      Arsitektur Harvard
Arsitektur Havard menggunakan memori terpisah untuk program dan data dengan alamat dan bus data yang berdiri sendiri. Karena dua perbedaan aliran data dan alamat, maka tidak  diperlukan multiplexing  alamat dan bus data. Arsitektur ini tidak hanya didukung dengan bus paralel untuk alamat dan data, tetapi juga menyediakanorganisasiinternal yang  berbeda sedemikian rupa instruksi dapat diambil dan dikodekan ketika dan data, tetapi juga menyediakan organisasi internal yang  berbeda sedemikian rupa instruksi dapaLebih lanjut lagi, bus data bisa saja memiliki ukuran yang berbeda  dari bus alamat. Hal ini memungkinkan pengoptimalan bus data dan bus alamat dalam pengeksekusian instruksi yang cepat.t diambil dan dikodekan ketika berbagai data sedang diambil dan dioperasikan. Sebagai contoh, mikrokontroler Intel keluarga MCS-51 menggunakan arsitektur Havard karena ada perbedaan kapasitas memori untuk program dan data, dan bus terpisah (internal) untuk alamat dan data.  Begitu juga dengan keluarga PIC dari Microchip yang menggunakan arsitektur Havard.
5.      Arsitektur Blue Gene
Blue Gene adalah sebuah arsitektur komputer yang dirancang untuk menciptakan beberapa superkomputer generasi berikut, yang dirancang untuk mencapai kecepatan operasi petaflop (1 peta = 10 pangkat 15), dan pada 2005 telah mencapai kecepatan lebih dari 100 teraflop (1 tera = 10 pangkat 12). Blue Gene merupakan proyek antara Departemen Energi Amerika Serikat (yang membiayai projek ini), industri (terutama IBM), dan kalangan akademi. Ada lima projek Blue Gene dalam pengembangan saat ini, di antaranya adalah Blue Gene/L, Blue Gene/C, dan Blue Gene/P.
Komputer pertama dalam seri Blue Gene. Blue Gene/L dikembangkan melalui sebuah “partnership” dengan Lawrence Livermore National Laboratory menghabiskan biaya AS$100 juta dan direncanakan dapat mencapai kecepatan ratusan TFLOPS, dengan kecepatan puncak teoritis 360 TFLOPS. Ini hampir sepuluh kali lebih cepat dari Earth Simulator, superkomputer tercepat di dunia sebelum Blue Gene. Pada Juni 2004, dua prototipe Blue Gene/L masuk dalam peringkat 500 besar superkomputer berada dalam posisi ke-4 dan ke-8.
Pada 29 September 2004 IBM mengumumkan bahwa sebuah prototipe Blue Gene/L di IBM Rochester (Minnesota) telah menyusul Earth Simulator NEC sebagai komputer tercepat di dunia, dengan kecepatan 36,01 TFLOPS, mengalahkan Earth Simulator yang memiliki kecepatan 35,86 TFLOPS. Mesin ini kemudian mencapai kecepatan 70,72.
Pada 24 Maret 2005, Departemen Energi AS mengumumkan bahwa Blue Gene/L memecahkan rekor komputer tercepat mencapai 135,5 TFLOPS. Hal ini dimungkinkan karena menambah jumlah rak menjadi 32 dengan setiap rak berisi 1.024 node komputasi. Ini masih merupakan setengah dari konfigurasi final yang direncanakan mencapai 65.536 node.
Pada 27 Oktober, 2005, Lawrence Livermore National Laboratory dan IBM mengumumkan bahwa Blue Gene/L sekali lagi telah menciptakan rekor dengan mengalahkan rekornya sendiri setelah mencapai kecepatan 280.6 TFLOPS
Referensi :